Distinct Basal Ganglia Circuits Controlling Behaviors Guided by Flexible and Stable Values

نویسندگان

  • Hyoung F. Kim
  • Okihide Hikosaka
چکیده

Choosing valuable objects is critical for survival, but their values may change flexibly or remain stable. Therefore, animals should be able to update the object values flexibly by recent experiences and retain them stably by long-term experiences. However, it is unclear how the brain encodes the two conflicting forms of values and controls behavior accordingly. We found that distinct circuits of the primate caudate nucleus control behavior selectively in the flexible and stable value conditions. Single caudate neurons encoded the values of visual objects in a regionally distinct manner: flexible value coding in the caudate head and stable value coding in the caudate tail. Monkeys adapted in both conditions by looking at objects with higher values. Importantly, inactivation of each caudate subregion disrupted the high-low value discrimination selectively in the flexible or stable context. This parallel complementary mechanism enables animals to choose valuable objects in both flexible and stable conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards.

The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of th...

متن کامل

Op-brai150137 1776..1800

The basal ganglia control body movements, value processing and decision-making. Many studies have shown that the inputs and outputs of each basal ganglia structure are topographically organized, which suggests that the basal ganglia consist of separate circuits that serve distinct functions. A notable example is the circuits that originate from the rostral (head) and caudal (tail) regions of th...

متن کامل

Basal ganglia circuits for reward value-guided behavior.

The basal ganglia are equipped with inhibitory and disinhibitory mechanisms that enable a subject to choose valuable objects and actions. Notably, a value can be determined flexibly by recent experience or stably by prolonged experience. Recent studies have revealed that the head and tail of the caudate nucleus selectively and differentially process flexible and stable values of visual objects....

متن کامل

Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values.

Gaze is strongly attracted to visual objects that have been associated with rewards. Key to this function is a basal ganglia circuit originating from the caudate nucleus (CD), mediated by the substantia nigra pars reticulata (SNr), and aiming at the superior colliculus (SC). Notably, subregions of CD encode values of visual objects differently: stably by CD tail [CD(T)] vs. flexibly by CD head ...

متن کامل

CALL FOR PAPERS Decision Making: Neural Mechanisms Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values

Yasuda M, Hikosaka O. Functional territories in primate substantia nigra pars reticulata separately signaling stable and flexible values. J Neurophysiol 113: 1681–1696, 2015. First published December 24, 2014; doi:10.1152/jn.00674.2014.—Gaze is strongly attracted to visual objects that have been associated with rewards. Key to this function is a basal ganglia circuit originating from the caudat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2013